Sains Malaysiana 53(10)(2024): 3395-3403
http://doi.org/10.17576/jsm-2024-5310-13
Kesan Keadaan Tinggi
Karbon Dioksida dan Kandungan Nutrien Media terhadap Pertumbuhan dan Kandungan Nutrien Wolffia arrhiza
(Effect of High Carbon Dioxide and Medium
Nutrient Content on the Growth and Nutrient Content of Wolffia arrhiza)
FARHANNAH AZHAR1, BABUL AIRIANAH
OTHMAN1 & MOHAMAD YUSOF MASKAT1,2,*
1Jabatan Sains Makanan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia,
43600 UKM Bangi, Selangor, Malaysia
2Pusat Inovasi
Teknologi Konfeksi, Fakulti Sains dan Teknologi, Universiti Kebangsaan
Malaysia, 43600 UKM Bangi, Selangor, Malaysia
Received: 6 February
2024/Accepted: 30 August 2024
Abstrak
Karbon dioksida (CO2) merupakan antara bahan
utama yang diperlukan oleh tumbuhan untuk pertumbuhan. Keadaan tinggi CO2 serta nutrien penanaman dapat meningkatkan pertumbuhan hasil tanaman serta
memberi kesan terhadap nutrien tumbuhan. Justeru, kajian ini dijalankan untuk
menentukan kesan keadaan tinggi CO2 dan nutrien media penanaman
(kalium nitrat (KNO3), magnesium sulfat heptahidrat (MgSO4.7H2O),
kalsium nitrat tetrahidrat (Ca(NO3)2.4H2O)
dan monokalium fosfat (KH2PO4))
terhadap pertumbuhan dan kandungan nutrien Wolffia
arrhiza. Wolffia arrhiza telah
ditanam di dalam tahap CO2 normal (500 ppm) dan tahap CO2 tinggi (800 ppm) serta 5 kepekatan nutrien media penanaman yang berbeza iaitu
N-media (kawalan), 3 kali kepekatan yang lebih rendah (A), 3 kali kepekatan
yang lebih tinggi (B), 5 kali kepekatan yang lebih tinggi (C) dan 7 kali
kepekatan yang lebih tinggi (D) berbanding N-media. Keputusan kajian
menunjukkan keadaan tinggi CO2 meningkatkan pertumbuhan Wolffia arrhiza dengan signifikan
(p<0.05) dengan peratus pertumbuhan yang lebih tinggi diperoleh berbanding
sampel yang tidak ditanam dalam keadaan tinggi CO2. Perbandingan
antara komposisi media yang berbeza menunjukkan tiada perbezaan signifikan bagi
kadar pertumbuhan untuk sampel yang ditanam sama ada pada keadaan CO2 normal atau tinggi CO2. Terdapat peningkatan kandungan karbohidrat
(p<0.05) Wolffia arrhiza dengan peningkatan tahap CO2 tetapi hanya pada media pertumbuhan dengan kepekatan nutrien yang tinggi
(masing-masing 61.4, 64.8 dan 64.3% bagi media B, C dan D). Tiada kesan signifikan oleh tahap CO2 dan
kandungan nutrien untuk kandungan protein dan nilai DPPH. Walau pun kajian ini
menunjukkan terdapat kesan positif oleh tahap CO2 yang lebih tinggi,
lebih banyak kajian perlu dijalankan untuk lebih memahami perubahan yang
berlaku secara fisiologi bagi Wolffia
arrizha hasil daripada penanaman pada CO2 yang tinggi supaya
dapat meningkatkan hasil.
Kata kunci: Karbohidrat; karbon dioksida; nutrien media;
pertumbuhan; Wolffia arrhiza
Abstract
Carbon dioxide (CO2) is one of the main
substances that plants need for growth. Conditions of high concentration of CO2 and cultivation nutrient can increase crop growth and
affect plant nutrients. Thus, this study was carried out to determine the
effect of high CO2 and nutrient concentration (potassium nitrate
(KNO3), magnesium sulphate heptahydrate (MgSO4.7H2O),
calcium nitrate tetrahydrate (Ca(NO3)2.4H2O)
and monopotassium phosphate (KH2PO4)) on the growth and nutrient content of Wolffia arrhiza. Wolffia arrhiza was grown in normal CO2 levels (500 ppm) and high CO2 levels (800 ppm) with 5 different nutrient concentrations of the cultivation
media which were N-media (control), 3 times lower concentration (A), 3 times
higher concentration (B), 5 times higher concentration (C) and 7 times higher
concentration (D) compared to N-media. Results of the study showed high CO2 conditions significantly (p<0.05) increased Wolffia arrhiza growth where
higher growth percentage was attained compared to samples not grown in high CO2 conditions. Comparison between different media compositions showed no
significant difference in growth rate for samples grown in either normal or
high CO2 conditions. There was an increase in carbohydrate content
(p<0.05) of Wolffia arrhiza with
the increase of CO2 but only in growth media with high nutrient
content (61.4, 64.8 dan 64.3% for media B, C, and D, respectively). No
significant effect of CO2 level and nutrient content on protein
content and DPPH value. Even though this study showed the positive effects of
high levels of CO2, more studies are needed to further understand
the physiological changes of Wolffia
arrizha as affected by high CO2 to increase yield.
Keywords: Carbohydrate; carbon dioxide; growth; nutrient
content; Wolffia arrhiza
REFERENCES
AOAC. 2016. Official
Methods of Analysis. 20th ed. Association of Official Analytical Chemists (AOAC)
International, USA.
Appenroth, K.J.
2015. Useful Methods 3: Media for in vitro-cultivation of duckweed. Duckweed
Forum: Newsletter for the Community of Duckweed Research and Applications, Part
2 3(4): 180-186.
Appenroth, K.J.,
Sree, K.S., Bog, M., Ecker, J., Seeliger, C., Bohm, V., Lorkowski, S., Sommer,
K., Vetter, W., Tolzin-Banach, K., Kirmse, R., Leiterer, M., Dawczynski, C.,
Liebisch, G. & Jahreis, G. 2018. Nutritional
value of the duckweed species of the genus Wolffia (Lemnaceae) as human food. Frontiers in Chemistry 6: 483.
doi:10.3389/chem2018.00483
Appenroth, K.J.,
Sree, K.S., Bohm, V., Hammann, S., Vetter, W., Leiterer, M. & Jahreis, G.
2017. Nutritional value of the
duckweed (Lemnaceae) as human food. Food
Chemistry 217: 266-273. doi:10.3389/chem2018.00483
Beukelaar, M.F.A., Zeinstra, G.G., Mes, J.J. &
Fischer, A.R.H. 2019. Duckweed as
human food. The influence of meal context and information on duckweed
acceptability of Dutch consumers. Food
Quality and Preference 71: 76-86.
Bhatia, A., Mina, U., Kumar, V., Tomer, R., Kumar, A.,
Chakrabarti, B., Singh, R.N. & Singh, B. 2021. Effect of elevated ozone and carbon dioxide interaction on growth,
yield, nutrient content and wilt disease severity in chickpea grown in Northern
India. Heliyon 7(1): e06049.
Demmig-Adams, B., Lopez-Pozo, M., Polutchko, S.K.,
Fourounjian, P., Stewart, J.J., Zenir, M.C., & Adams III, W.W. 2022. Growth and nutritional quality of Lemnaceae
viewed comparatively in an ecological and evolutionary context. Plants 11(2): 145.
doi.org/10.3390/plants11020145
Devlamnyck, R., Fernandes de Souza, M., Bog, M.,
Leenknegt, J., Eeckhout, M., & Meers, E. 2020. Effect of the growth medium composition on nitrate accumulation in the
novel protein crop Lemna minor. Ecotoxicology and Environmental Safety 206: 111380.
Dong, J.L., Li, X., Gruda, N. & Duan, Z.Q. 2018a. Interactive effects of elevated carbon
dioxide and nitrogen availability on fruit quality of cucumber (Cucumis
sativus L.). Journal of
Integrative Agriculture 17(11): 2438-2446.
Dong, J.L., Gruda, N., Lam, S.K., Li, X. & Duan, Z.
2018b. Effects of elevated CO2 on nutritional quality of vegetables: A review. Frontiers in Plant Science 9: 924.
Duval, B.D. & Blankinship, J.C. 2012. CO2 effects on plant nutrient
concentration depend on plant functional group and available nitrogen: A
meta-analysis. Plant Ecology 213(3): 505-521. doi:10.1007/s11258-011-9998-8
Hu, Z., Fang, Y., Yi, Z., Tian, X., Li, J., Jin, Y., He,
K., Liu, P., Du, A., Huang, Y. & Zhao, H. 2022. Determining the nutritional value and antioxidant capacity of duckweed
(Wolffia arrhiza) under artificial conditions. LWT – Food Science and Technology 153:
112477.
Kadir, A.A., Abdullah, S.R.S., Othman, B.A., Hassan,
H.A., Othman, A.R., Imron, M.F., Ismail, N.I. & Kurniawan, S.B. 2020. Dual function of Lemna minor and Azolla pinnata as phytoremediator for
palm oil mill effluent and as feedstock. Chemosphere 259: 127468.
Kant, S., Seneweera, S., Rodin, J., Mateme, M., Burch,
D., Rothstein, S.J. & Spangenberg, G. 2012. Improving yield potential in crops under elevated CO2:
Integrating the photosynthetic and nitrogen utilization efficiencies. Frontiers in Plant Science 3: 162.
Khan,
K.A., Yan, Z. & He, D. 2018. Impact
of light intensity and nitrogen of nutrient solution on nitrate content in
three lettuce cultivars prior to harvest. Journal of Agricultural Science 10(6): 99-109.
Krämer,
K., Kepp, G., Brock, J., Stutz, S. & Heyer, A.G. 2022. Acclimation to
elevated CO2 affects the C/N balance by reducing de novo N-assimilation. Physiologia Plantarum 174(1): e13615.
Kumar,
S., Kumar, S. & Mohapatra, T. 2021. Interaction between macro- and
micro-nutrients in plants. Frontiers in
Plant Science 12: 665582.
Kotowska,
U., Karpinska, J., Kapelewska, J., Kowejsza, E.M., Piotrowska-Niczyporuk, A.,
Piekutin, J. & Kotowski, A. 2018. Removal of phthalates and other
contaminants from municipal wastewater during cultivation of Wolffia arrhiza. Process Safety and Environmental Protection 120: 268-277.
Lam, E. 2015. Duckweed futures: Duckweed's renaissance as
a model system for plant biology? Duckweed
Forum: Newsletter for the Community of Duckweed Research and Applications Part
2 3(4): 172-177.
Lee,
Y.H., Sang, W.G., Baek, J.K., Kim, J.H., Shin, P., Seo, M.C. & Cho, J.I.
2020. The effect of concurrent
elevation in CO2 and temperature on the growth, photosynthesis, and
yield of potato crops. PLoS ONE 15(10):
e0241081.
Lenghari, S.J., Wahocho, N.A., Laghari, G.M., Laghari,
A.H., Bhabhan, G.M., Talpur, K.H., Bhutto, T.A., Wahocho, S.A. & Lashari,
A.A. 2016. Role of nitrogen for plant
growth and development: A review. Advances
in Environmental Biology 10(9): 209-218.
Mohedano, R.A., Costa, R.H.R. & Filho, P.B. 2016. Proper rate of N is essential for
improvement of horticultural crops. American
Latin Journal of Environmental Biotechnology and Algae 7(1): 30-41.
Pritchard, S.G., Ju, Z., Santen, E.V., Qiu, J., Weaver,
D.B., Prior, S.A. & Rogers, H.H. 2000. The influence of elevated CO2 on the activities of
antioxidative enzymes in two soybean genotypes. Australian Journal of Plant Physiology 27: 1061-1068.
Romanowska-Duda, Z. & Pszczolkowski, W. 2013. Lemnaceae biomass as an alternative
substrate for renewable energy. Acta
Innovations 9: 25-31.
Sein, A.M., Sein, M.M. & Aye, M.T. 2020. Effect of Wolffia sp. as supplemental
feed on growth performance and body vomposition of Indian Major Carp, Labeo
rohita (Hamilton, 1822) fingerlings. IOP Conference Series: Earth and Environmental Science 416: 012013.
Siripahanakul, T., Thongsila, S., Tanuthong, T. &
Chockchaisawasdee, S. 2013. Product
development of Wolffia-pork ball. International
Food Research Journal 20(1): 213-217.
Sirirustananun, N. & Jongput, B. 2021. Appropriate stocking density for growth of
watermeal (Wolffia arrhiza) and its efficiency of total ammonia nitrogen
removal. International Journal of Agricultural Technology 17(1): 325-336.
Stitt, M. & Krapp, A. 1999. The interaction between elevated carbon dioxide and nitrogen nutrition:
The physiological and molecular background. Plant, Cell and Environment 22: 583-621.
Sun, J., Luo, H., Jiang, Y., Wang, L., Xiao, C. &
Weng, L. 2022. Influence of nutrient
(NPK) factors on growth and pharmacodynamic component biosynthesis of Atractylodes
chinensis: An insight on acetyl-CoA carboxylase (ACC),
3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), and Farnesyl Pyrophosphate
Synthase (FPPS) signaling responses. Frontiers in Plant Science 13: 799201.
Suppadit, T., Phoochinda, W., Phutthilerphong, S. &
Nieobubpa, C. 2008. Treatment of
effluent from shrimp farms using watermeal (Wolffia arrhiza). Science Asia 34: 163-168.
Thinh, N.C., Shimono, H., Kumagai, E. & Kawasaki, M.
2017. Effects of elevated CO2 concentration on growth and photosynthesis of Chinese yam under different
temperature regimes. Plant
Production Science 20(2): 227-236.
Thompson, M., Gamage, D., Hirotsu, N., Martin, A. &
Seneweera, S. 2017. Effects of elevated carbon dioxide on photosynthesis and
carbon partitioning: A perspective on root sugar sensing and hormonal
crosstalk. Frontiers in Physiology 8.
https://doi.org/10.3389/fphys.2017.00578
Tipnee, S., Jutiviboonsuk, A. & Wongtrakul, P. 2017. The bioactivity study of active compounds in Wolffia globosa extract for an alternative source of bioactive
substances. Cosmetics 4(4):
53. doi:10.3390/cosmetics4040053
Velden, D.V.D. 2014. The influence of soil moisture on
stomatal conductance responsiveness to CO2. Thesis. Palaeoecology, Department of Physical Geography, Faculty
of Geosciences, Utrecht University (Unpublished).
Wang, L., Yang, L., Xiong, F., Nie, X., Li, C., Xiao, Y.
& Zhou, G. 2020. Nitrogen
fertilizer levels affect the growth and quality parameters of Astragalus
mongolica. Molecules 25(2): 381. doi:10.3390/molecules25020381
Yoneyama, T. & Suzuku, A. 2020. Light-independent nitrogen assimilation in
plant leaves: Nitrate incorporation into glutamine, glutamate, aspartate, and
asparagine traced by 15N. Plants 9(10): 1303.
Zenir, M.C., Lopez-Pozo, M., Polutchko, S.K., Stewart, J.J., Adams, W.W., Escobar, A. & Demmig-Adams, B. 2023. Productivity and nutrient quality of Lemna minor as affected by microbiome, CO 2 level, and nutrient supply. Stresses 3:69-85.
Zhang, Y.M., Xue, J., Zhang, G.Q., Zhang, W.X., Wang,
K.R., Ming, B., Hou, P., Xie, R.Z., Liu, C.W. & Li, S.K. 2021. Does nitrogen application rate affect the
moisture content of corn grains? Journal
of Integrative Agriculture 20(10): 2627-2638.
*Corresponding author; email: yusofm@ukm.edu.my